MATH1010E University Mathematics
Quiz 1
Suggested Solutions
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2. From the definition of derivative as limit of difference quotient,
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3. (a) For z >0, f(z) = 2?sin(In z), hence

1
f'(z) = 2zsin(lnx) + 2 cos(Inz) - — = 2rsin(Inx) + x cos(In z).
T

For z < 0, f(z) = 2?sin(In —x), hence

f'(z) = 2zsin(In(—z)) + 2* cos(In(—z)) - i = 2zsin(In(—=z)) + x cos(In(—x)).

Therefore, for x # 0,

f'(z) = 2xsin(In|z|) + z cos(In |x|)
2z sin(lnx) +  cos(In x) when z > 0,
2z sin(In(—=x)) + x cos(In(—x)) when z < 0.

(b) Using the definition of derivative,

. [f(x) = f(0)
/ —
Fo = ==y
2 _
— i ® sin(ln |z]|) — 0
z—0 z—0
= lim zsin(In |z|)
z—0
= 0.

The last equality holds by sandwich theorem since —|z| < xsin(In |z|) < |z| for
all z # 0 and that lim,_,o —|z| = lim,_, |z| = 0.
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From (a), f'(z) = 2xsin(In|z|) + z cos(In |z|). Moreover, by sandwich theorem,
we have

lim 2z sin(In |z|) = 0 = lim z cos(In |z|).
z—0 z—0

Therefore,

lim f'(z) = 0.

x—0

On the other hand, f’(0) = 0 by (b). Hence, lim,_,o f’(z) exists and equals to
£'(0), which means that f'(x) is continuous at = 0.

Consider the difference quotient,

f'(x) — f'(0)  2xsin(ln|z|) + 2 cos(ln |z|)
x—0 B x

= 2sin(In|z|) + cos(In |z]).
Since the limit of the right hand side does not exist for x — 0 (this can be

seen by taking z = e~®"*V7/2 for n, = 0,1,2,3,...), this implies that f’ is not
differentiable at x = 0.

— End of Solutions to Quiz 1 —



